Preview

Problems of Geroscience

Advanced search

The gut microbiome as a central player in aging: mechanisms and health outcomes

https://doi.org/10.37586/2949-4745-3-2024-154-160

Abstract

The article explores the mechanisms by which the gut microbiome influences human aging and associated diseases. The authors examine age-related changes in the composition of the microbiota and their effects on inflammation, immune response, and intestinal barrier permeability. Special attention is given to the pathogenic interactions between the gut microbiota and the development of cardiovascular, metabolic, and neurodegenerative diseases. The role of microbiome imbalance, known as dysbiosis, is highlighted as one of the key mechanisms accelerating the aging process. The review provides a comprehensive analysis of recent studies that demonstrate the impact of microbial metabolites on various body systems through the «gut-brain,» «gut-cardiovascular,» and «gut-endocrine» axes.

About the Authors

A. A. Melnitskaia
Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
Russian Federation

Melnitskaia Aleksandra A., MD, geriatrician, Junior Researcher, Laboratory of Biomarkers of Aging

Moscow



L. V. Matchekhina
Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
Russian Federation

Machekhina Lubov V., MD, PhD, Head of the Laboratory of Biomarkers of Aging

Moscow



A. K. Ilyushchenko
Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
Russian Federation

Ilyushchenko Anna K., MD, internist

Moscow



I. D. Strazhesko
Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
Russian Federation

Strazhesko Irina D., MD, PhD, Deputy Director for Translational Medicine,  Leading Researcher at the Department of Age-Related Diseases, Medical Scientific and Educational Center of Lomonosov Moscow State University

Moscow



References

1. World Health Organization. Ageing and health. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. Published October 4, 2021. (дата обращения: 28.08.2024)

2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243-278. doi:10.1016/j.cell.2022.11.001

3. Schmauck-Medina T, Molière A, Lautrup S, et al. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging (Albany NY). 2022;14(16):6829-6839. doi:10.18632/aging.204248

4. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-1836. Published 2017 May 16. doi:10.1042/BCJ20160510

5. Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal. 2024;22(1):285. Published 2024 May 24. doi:10.1186/s12964-024-01663-1

6. Ling Z, Liu X, Cheng Y, Yan X, Wu S. Gut microbiota and aging. Crit Rev Food Sci Nutr. 2022;62(13):3509-3534. doi:10.1080/10408398.2020.1867054

7. Ghosh TS, Das M, Jeffery IB, O'Toole PW. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. Elife. 2020;9:e50240. Published 2020 Mar 11. doi:10.7554/eLife.50240

8. Naspolini NF, Schüroff PA, Figueiredo MJ, et al. The Gut Microbiome in the First One Thousand Days of Neurodevelopment: A Systematic Review from the Microbiome Perspective. Microorganisms. 2024;12(3):424. Published 2024 Feb 20. doi:10.3390/microorganisms12030424

9. Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. Published 2015 Feb 2. doi:10.3402/mehd.v26.26050

10. Li, H., Wang, J., Wu, L. et al. The impacts of delivery mode on infant’s oral microflora. Sci Rep 8, 11938 (2018). https://doi.org/10.1038/s41598-018-30397-7

11. Martino, C., Dilmore, A.H., Burcham, Z.M. et al. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol 20, 707–720 (2022). https://doi.org/10.1038/s41579-022-00768-z

12. Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med. 2024;19(2):275-293. doi:10.1007/s11739-023-03374-w

13. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959-2977. doi:10.1007/s00018-017-2509-x

14. Buford, T.W. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5, 80 (2017). ttps://doi.org/10.1186/s40168-017-0296-0

15. de la Cuesta-Zuluaga J, Kelley ST, Chen Y, et al. Age- and Sex-Dependent Patterns of Gut Microbial Diversity in Human Adults. mSystems. 2019;4(4):e00261-19. Published 2019 May 14. doi:10.1128/mSystems.00261-19

16. Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients. 2019;11(6):1251. Published 2019 Jun 1. doi:10.3390/nu11061251

17. DeJong EN, Surette MG, Bowdish DME. The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence. Cell Host Microbe. 2020;28(2):180-189. doi:10.1016/j.chom.2020.07.013

18. Alsegiani AS, Shah ZA. The influence of gut microbiota alteration on age-related neuroinflammation and cognitive decline. Neural Regen Res. 2022;17(11):2407-2412. doi:10.4103/1673-5374.335837

19. Ziganshina EE, Sharifullina DM, Lozhkin AP, Khayrullin RN, Ignatyev IM, Ziganshin AM. Bacterial Communities Associated with Atherosclerotic Plaques from Russian Individuals with Atherosclerosis. PLoS One. 2016;11(10):e0164836. Published 2016 Oct 13. doi:10.1371/journal.pone.0164836

20. Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem. 2018;56:1-15. doi:10.1016/j.jnutbio.2017.12.010

21. Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908-1914. doi:10.1016/j.jacc.2014.02.617

22. Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem. 2009;73(8):1837-1843. doi:10.1271/bbb.90231

23. Wang L, Zhu Q, Lu A, et al. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens. 2017;35(9):1899-1908. doi:10.1097/HJH.0000000000001378

24. Roshanravan N, Mahdavi R, Alizadeh E, et al. Effect of Butyrate and Inulin Supplementation on Glycemic Status, Lipid Profile and Glucagon-Like Peptide 1 Level in Patients with Type 2 Diabetes: A Randomized Double-Blind, Placebo-Controlled Trial. Horm Metab Res. 2017;49(11):886-891. doi:10.1055/s-0043-119089

25. Natarajan N, Hori D, Flavahan S, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics. 2016;48(11):826-834. doi:10.1152/physiolgenomics.00089.2016

26. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5(2):202-207. doi:10.4161/gmic.27492

27. Laman JD, Schoneveld AH, Moll FL, van Meurs M, Pasterkamp G. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am J Cardiol. 2002;90(2):119-123. doi:10.1016/s0002-9149(02)02432-3

28. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. Published 2017 Oct 10. doi:10.1038/s41467-017-00900-1

29. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. Published 2017 Oct 10. doi:10.1038/s41467-017-00900-1

30. Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr. 2020;123(10):1127-1137. doi:10.1017/S0007114520000380

31. Upadhyaya S, Banerjee G. Type 2 diabetes and gut microbiome: at the intersection of known and unknown. Gut Microbes. 2015;6(2):85-92. doi:10.1080/19490976.2015.1024918

32. Harsch IA, Konturek PC. The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old" Diseases. Med Sci (Basel). 2018;6(2):32. Published 2018 Apr 17. doi:10.3390/medsci6020032

33. Wu J, Yang K, Fan H, Wei M, Xiong Q. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2023;14:1114424. Published 2023 May 9. doi:10.3389/fendo.2023.1114424

34. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020-1032. doi:10.1136/gutjnl-2021-326789

35. Allegretti JR, Kassam Z, Mullish BH, et al. Effects of Fecal Microbiota Transplantation With Oral Capsules in Obese Patients. Clin Gastroenterol Hepatol. 2020;18(4):855-863.e2. doi:10.1016/j.cgh.2019.07.006

36. Rhodes JM. The role of Escherichia coli in inflammatory bowel disease. Gut. 2007;56(5):610-612. doi:10.1136/gut.2006.111872

37. Zhang J, Hoedt EC, Liu Q, et al. Elucidation of Proteus mirabilis as a Key Bacterium in Crohn's Disease Inflammation. Gastroenterology. 2021;160(1):317-330.e11. doi:10.1053/j.gastro.2020.09.036

38. Pai CS, Wang CY, Hung WW, et al. Interrelationship of Gut Microbiota, Obesity, Body Composition and Insulin Resistance in Asians with Type 2 Diabetes Mellitus. J Pers Med. 2022;12(4):617. Published 2022 Apr 11. doi:10.3390/jpm12040617

39. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376-381. doi:10.1038/nature18646

40. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8(1):1784. Published 2017 Dec 5. doi:10.1038/s41467-017-01973-8

41. Xu Z, Jiang W, Huang W, Lin Y, Chan FKL, Ng SC. Gut microbiota in patients with obesity and metabolic disorders - a systematic review. Genes Nutr. 2022;17(1):2. Published 2022 Jan 29. doi:10.1186/s12263-021-00703-6

42. Bisanz JE, Upadhyay V, Turnbaugh JA, Ly K, Turnbaugh PJ. Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host Microbe. 2019;26(2):265-272.e4. doi:10.1016/j.chom.2019.06.013

43. Thingholm LB, Rühlemann MC, Koch M, et al. Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host Microbe. 2019;26(2):252-264.e10. doi:10.1016/j.chom.2019.07.004

44. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595(2):489-503. doi:10.1113/JP273106

45. O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32-48. doi:10.1016/j.bbr.2014.07.027

46. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112(Pt B):399-412. doi:10.1016/j.neuropharm.2016.07.002

47. Lin, L., Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18, 2 (2017). https://doi.org/10.1186/s12865-016-0187-3

48. Rowland, I., Gibson, G., Heinken, A. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57, 1–24 (2018). https://doi.org/10.1007/s00394-017-1445-8

49. Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil. 2016;28(5):620-630. doi:10.1111/nmo.12754

50. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050-16055. doi:10.1073/pnas.1102999108

51. Wendeln AC, Degenhardt K, Kaurani L, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556(7701):332-338. doi:10.1038/s41586-018-0023-4

52. Philip Mani A, Balasubramanian B, Mali LA, Joseph KS, Meyyazhagan A, Pappuswamy M, Joseph BV. The Role of the Gut Microbiota in Neurodegenerative Diseases. Microbiology Research. 2024; 15(2):489-507. https://doi.org/10.3390/microbiolres15020033

53. Vogt, N.M., Romano, K.A., Darst, B.F. et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alz Res Therapy 10, 124 (2018). https://doi.org/10.1186/s13195-018-0451-2

54. Del Rio D, Zimetti F, Caffarra P, Tassotti M, Bernini F, Brighenti F, Zini A, Zanotti I. The Gut Microbial Metabolite Trimethylamine-N-Oxide Is Present in Human Cerebrospinal Fluid. Nutrients. 2017; 9(10):1053. https://doi.org/10.3390/nu9101053

55. Qiao CM, Quan W, Zhou Y, et al. Orally Induced High Serum Level of Trimethylamine N-oxide Worsened Glial Reaction and Neuroinflammation on MPTP-Induced Acute Parkinson's Disease Model Mice. Mol Neurobiol. 2023;60(9):5137-5154. doi:10.1007/s12035-023-03392-x

56. Zhang Y, Jian W. Signal Pathways and Intestinal Flora through Trimethylamine N-oxide in Alzheimer's Disease. Curr Protein Pept Sci. 2023;24(9):721-736. doi:10.2174/1389203724666230717125406

57. Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv Nutr. 2020;11(3):709-723. doi:10.1093/advances/nmz127

58. Braidy, N., Grant, R., Adams, S. et al. Mechanism for Quinolinic Acid Cytotoxicity in Human Astrocytes and Neurons. Neurotox Res 16, 77–86 (2009). https://doi.org/10.1007/s12640-009-9051-z

59. Tanaka M, Török N, Tóth F, Szabó Á, Vécsei L. Co-Players in Chronic Pain: Neuroinflammation and the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines. 2021; 9(8):897. https://doi.org/10.3390/biomedicines9080897

60. Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer's Disease. J Neurogastroenterol Motil. 2019;25(1):48-60. doi:10.5056/jnm18087

61. Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol. 2022;18(8):476-495. doi:10.1038/s41582-022-00681-2

62. Wang Q, Luo Y, Ray Chaudhuri K, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic options. Brain. 2021;144(9):2571-2593. doi:10.1093/brain/awab156


Review

For citations:


Melnitskaia A.A., Matchekhina L.V., Ilyushchenko A.K., Strazhesko I.D. The gut microbiome as a central player in aging: mechanisms and health outcomes. Problems of Geroscience. 2024;(3):154-160. (In Russ.) https://doi.org/10.37586/2949-4745-3-2024-154-160

Views: 220


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0.


ISSN 2949-4745 (Print)
ISSN 2949-4753 (Online)