Cost-effectiveness of the biological age calculator
https://doi.org/10.37586/2949-4745-1-2024-22-29
Abstract
Relevance. The analysis of numerous data from clinical studies over the last decades has revealed regularities between certain clinical parameters and patient age. The correspondence between certain indicators characteristic of different age groups has made it possible to differentiate between biological age and chronological age. These observations have led to the development of tools for calculating biological age such as biological age calculators and aging clocks. If the biological age is lower than the chronological age, it indicates that the aging process is lower in a given individual, and vice versa. Biological age calculators are used in clinics to adjust treatment plans. The results of these calculations will eventually lead to their introduction into clinical practice and may also influence the social status of patients as a method for checking compliance with retirement age regulations. This may lead to changes in the structure of the state's healthcare costs. The relevance of developing and using of biological age and aging clock calculators is due to the increasing proportion of older people each year. The development of medicine and the emergence of new approaches to prolonging active longevity and fighting age-related diseases slows down the aging process and reduces biological age in relation to passport age. Biologic age calculator could later be introduced into clinical practice as a tool to determine true (biological) age in order to provide appropriate treatment for patients. Social significance may lie in adjusting retirement age and extending labor activity. Aim. The aim of the paper is to assess the impact of introducing tools such as biological age calculator and aging clock into the daily practice of health care institutions, on the economic burden of healthcare and budgetary savings.
Materials and methods. Foreign and domestic sources containing information of economic nature on the impact of active longevity and life expectancy extension on socio-economic indicators were used in the preparation of this publication.
Results. The introduction of biological age calculators in medical institutions has a significant impact on economic indicators and the efficiency of health care. Generally, research results confirm that the use of biological age calculators leads to improved performance in terms of economic indicators, reduced costs, increased efficiency, and improved quality of patient care in medical practice.
Conclusion. The use of biological age calculators has a significant impact on the economy. They help to plan health-saving programmes and reduce medical costs, which improves public health, labour productivity, and reduces social costs, while improving the quality of life for the population.
About the Authors
M. S. ArbatskiyRussian Federation
Arbatskiy Mikhail S., PhD, Head of the Laboratory of Artificial Intelligence and Bioinformatics,
Moscow.
D. E. Balandin
Russian Federation
Balandin Dmitry E., lab technician, Laboratory of Artificial Intelligence and Bioinformatics,
Moscow.
A. A. Melnitskaia
Russian Federation
Melnitskaia Aleksandra A., MD, geriatrician, Junior Researcher, Laboratory of Biomarkers of Aging,
Moscow.
References
1. Scott, A.J., Ellison, M. & Sinclair, D.A. The economic value oftargeting aging. Nat Aging 1, 616–623 (2021). https://doi.org/10.1038/s43587-021-00080-0
2. Moskalev, A. Introduction In: A Moskalev, editor. Biomarkers of human aging, vol. 10. New York: Healthy Ageing and Longevity. Springer International Publishing (2019)
3. Jin S, Li C, Cao X, Chen C, Ye Z, Liu Z. Association of lifestyle with mortality and the mediating role of aging among older adults in China. Arch Gerontol Geriatr. 2022;98:104559. doi: 10.1016/j.archger.2021.104559
4. Sprott RL. Biomarkers of aging and disease: introduction and definitions. Exp Gerontol. 2010;45(1):2-4. doi: 10.1016/j.exger.2009.07.008
5. Johnson TE: Recent results: biomarkers of aging. Exp Gerontol. 2006; 41(12): 1243–6
6. Mitnitski A, Collerton J, Martin-Ruiz C, et al. Age-related frailty and its association with biological markers of ageing. BMC Med. 2015;13:161. Published 2015 Jul 13. doi: 10.1186/s12916-015-0400-x
7. Jylhävä J, Pedersen NL, Hägg S. Biological Age Predictors. EBioMedicine. 2017;21:29-36. doi: 10.1016/j.ebiom.2017.03.046
8. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. doi: 10.1186/gb-2013-14-10-r115
9. Mamoshina P, Volosnikova M, Ozerov IV, Putin E, Skibina E, Cortese F, Zhavoronkov A. Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification. Front Genet. 2018 Jul 12;9:242. doi: 10.3389/fgene.2018.00242
10. Galkin F, Mamoshina P, Aliper A, Putin E, Moskalev V, Gladyshev VN, Zhavoronkov A. Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. iScience. 2020 Jun 26;23(6):101199. doi: 10.1016/j.isci.2020.101199
11. van den Akker EB, Trompet S, Barkey Wolf JJH, Beekman M, Suchiman HED, Deelen J. et al., Metabolic Age Based on the BBMRINL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circ Genom Precis Med. 2020 Oct;13(5):541-547. doi: 10.1161/CIRCGEN.119.002610
12. Holzscheck N, Falckenhayn C, Söhle J, Kristof B, Siegner R, Werner A, Schössow J, Jürgens C, Völzke H, Wenck H, Winnefeld M, Grönniger E, Kaderali L. Modeling transcriptomic age using knowledge-primed artificial neural networks. NPJ Aging Mech Dis. 2021 Jun 1;7(1):15. doi: 10.1038/s41514-021-00068-5
13. Сайт Росстата. Статистика — Официальная статистика — Население — Демография — Численность и состав населения — Распределение населения по возрастным группам
14. Численность населения российской федерации по полу и возрасту на 1 января 2023 года: статистический бюллетень / Федеральная служба государственной статистики (Росстат). М. 2023
15. Сайт Росстата. Статистика — Официальная статистика — Население — Уровень жизни — Социальное обеспечение и социальная помощь — Основные показатели пенсионного обеспечения, численность пенсионеров и средний размер назначенных пенсий по видам пенсионного обеспечения и категориям пенсионеров
16. Проект бюджета Социального фонда (СФР) на 2024 год и плановый период 2025 и 2026 годов
17. Bae C-y, Kim B-s, Cho K-h, Kim I-h, Kim J-h, Kim J-h (2023) 10-year follow-up study on medical expenses and medical care use according to biological age: National Health Insurance Service Health Screening Cohort (NHIS-HealS 2002~2019). PLoS ONE 18(3): e0282466. https://doi.org/10.1371/journal.pone.0282466
18. Федеральный закон от 27.11.2023 N 542-ФЗ «О бюджете Фонда пенсионного и социального страхования Российской Федерации на 2024 год и на плановый период 2025 и 2026 годов»
19. Федеральный закон от 28.12.2013 N 400-ФЗ (ред. от 28.12.2022) «О страховых пенсиях»
Review
For citations:
Arbatskiy M.S., Balandin D.E., Melnitskaia A.A. Cost-effectiveness of the biological age calculator. Problems of Geroscience. 2024;(1):22-29. (In Russ.) https://doi.org/10.37586/2949-4745-1-2024-22-29