Ассоциации ИФР-1 и ИФРСБ-3 со старением и развитием возраст-ассоциированных заболеваний
https://doi.org/10.37586/2949-4745-3-2024-131-140
Аннотация
Старение представляет собой биологический процесс, который затрагивает множество систем организма и сопровождается изменениями на молекулярном, клеточном и физиологическом уровнях. Одним из ключевых элементов в изучении старения является определение роли инсулиноподобных факторов роста (ИФР) и инсулиноподобных связывающих белков (ИФРСБ). ИФР, в частности ИФР-1, играют важную роль в регуляции клеточного роста, метаболизма и апоптоза. ИФРСБ, в особенности ИФРСБ-3, регулируют биодоступность ИФР, связывая их и модулируя их взаимодействие с рецепторами. В данной статье рассматриваются преимущественно механизмы действия ИФР-1 и ИФРСБ-3, а также данные клинических исследований, изучающих их роль в процессе старения, долголетии и развитии возраст-ассоциированных заболеваний. Для исследования связи ИФР и ИФРСБ с процессами старения был проведен поиск по базам статей Scopus и PubMed. Были отобраны фундаментальные и клинические исследования, опубликованные преимущественно в период с 2010 по 2024 год. Поиск проводился по ключевым словам «инсулиноподобные факторы роста», «инсулиноподобные связывающие белки», «старение», «возраст-ассоциированные заболевания».
Ключевые слова
Об авторах
А. К. ИльющенкоРоссия
Ильющенко Анна Константиновна, врач-терапевт, младший научный сотрудник лаборатории биомаркеров старения
Москва
Л. В. Мачехина
Россия
Мачехина Любовь Викторовна, канд. мед. наук, заведующая лабораторией биомаркеров старения
Москва
А. А. Мельницкая
Россия
Мельницкая Александра Андреевна, врач-гериатр, младший научный сотрудник лаборатории биомаркеров старения
Москва
И. Д. Стражеско
Россия
Стражеско Ирина Дмитриевна, д-р мед. наук, заместитель директора по трансляционной медицине; ведущий научный сотрудник отдела возраст-ассоциированных заболеваний медицинского научно-образовательного центра МГУ им. М.В. Ломоносова
Москва
Список литературы
1. Dorandish S., Devos J., Clegg B., et al. Biochemical determinants of the IGFBP-3-hyaluronan interaction. FEBS Open Bio. 2020;10(8):1668-1684. doi: 10.1002/2211-5463.12919
2. Shen Y., Zhang J., Zhao Y., et al. Diagnostic value of serum IGF-1 and IGFBP-3 in growth hormone deficiency: a systematic review with meta-analysis. Eur J Pediatr. 2015;174(4):419-427. doi: 10.1007/s00431-014-2406-3
3. Lauszus F. Fetal Growth and Renovascular Function. A Review on Pathophysiology in type 1 Diabetic Pregnancy, 2019. doi: 10.13140/ RG.2.2.18215.19360
4. Lepenies J., Wu Z., Stewart P.M., Strasburger C.J., Quinkler M. IGF-1, IGFBP-3 and ALS in adult patients with chronic kidney disease. Growth Horm IGF Res. 2010;20(2):93-100. doi: 10.1016/j.ghir.2009.10.002
5. Baxter R.C. Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit. Nat Rev Endocrinol. 2024;20(7):414-425. doi: 10.1038/s41574-024-00970-4
6. Arosio M., Garrone S., Bruzzi P., Faglia G., Minuto F., Barreca A. Diagnostic value of the acid-labile subunit in acromegaly: evaluation in comparison with insulin-like growth factor (IGF) I., and IGF-binding protein-1, -2, and -3. J Clin Endocrinol Metab. 2001;86(3):1091-1098. doi: 10.1210/jcem.86.3.7288
7. Baxter R.C. Characterization of the acid-labile subunit of the growth hormone-dependent insulin-like growth factor binding protein complex. J Clin Endocrinol Metab. 1988;67(2):265-272. doi: 10.1210/jcem-67-2-265
8. Baxter R.C. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev. 2023;44(5):753-778. doi: 10.1210/endrev/bnad008
9. Mani A.M., Fenwick M.A., Cheng Z., Sharma M.K., Singh D., Wathes D.C. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction. 2010;139(1):139-151. doi: 10.1530/REP-09-0050
10. Ghafouri-Fard S., Abak A., Mohaqiq M., Shoorei H., Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol. 2021;9:634512. doi: 10.3389/fcell.2021.634512
11. Rudd B.T., Rayner P.H., Thomas P.H. Observations on the role of GH/IGF-1 and sex hormone binding globulin (SHBG) in the pubertal development of growth hormone deficient (GHD) children. Acta Endocrinol Suppl (Copenh). 1986;279:164-169. doi: 10.1530/acta.0.112s164
12. Adams M.L. Differences Between Younger and Older US Adults With Multiple Chronic Conditions. Prev Chronic Dis. 2017;14:E76. doi: 10.5888/pcd14.160613
13. Juul A., Møller S., Mosfeldt-Laursen E., et al. The acidlabile subunit of human ternary insulin-like growth factor binding protein complex in serum: hepatosplanchnic release, diurnal variation, circulating concentrations in healthy subjects, and diagnostic use in patients with growth hormone deficiency. J Clin Endocrinol Metab. 1998;83(12):4408-4415. doi: 10.1210/jcem.83.12.5311
14. Majchrzak-Baczmańska D., Malinowski A. Does IGF-1 play a role in the biology of endometrial cancer? Ginekol Pol. 2016;87(8):598- 604. doi: 10.5603/GP.2016.0052
15. Nicholls A.R., Holt R.I. Growth Hormone and Insulin-Like Growth Factor-1. Front Horm Res. 2016;47:101-114. doi: 10.1159/000445173
16. Allard J.B., Duan C. IGF-binding proteins: why do they exist and why are there so many? Front Endocrinol (Lausanne). 2018;9:117. doi: 10.3389/fendo.2018.00117
17. Mazerbourg S., Monget P. Insulin-Like Growth Factor Binding Proteins and IGFBP Proteases: A Dynamic System Regulating the Ovarian Folliculogenesis. Front Endocrinol (Lausanne). 2018;9:134. doi: 10.3389/fendo.2018.00134
18. Song F., Zhou X.X., Hu Y., Li G., Wang Y. The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther. 2021;38(2):885-903. doi: 10.1007/s12325-020-01581-x
19. Ruiz-Torres A., Soares de Melo Kirzner M. Ageing and longevity are related to growth hormone/insulin-like growth factor-1 secretion. Gerontology. 2002;48(6):401-407. doi: 10.1159/000065507
20. Cai Q., Dozmorov M., Oh Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells. 2020;9(5):1261. doi: 10.3390/cells9051261
21. Vitale, Giovanni & Pellegrino, Giuseppe &Vollery, Maria &Hofland, Leo. (2019). ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians' Perspective. Frontiers in Endocrinology. 10. 27. doi: 10.3389/fendo.2019.00027
22. Paolisso G., Ammendola S., Del Buono A., et al. Serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J Clin Endocrinol Metab. 1997;82(7):2204-2209. doi: 10.1210/jcem.82.7.4087
23. Orskov H. Somatostatin, growth hormone, insulin-like growth factor-1, and diabetes: friends or foes? Metabolism. 1996;45(8 Suppl 1):91-95. doi: 10.1016/s0026-0495(96)90094-3
24. Moses A.C., Young S.C., Morrow L.A., et al. 1996 Recombinant human insulin like growth factor I increases insulin sensitivity and improves glycemic control in type diabetes. Diabetes. 45:91–100
25. Skolink E.Y., Lee C.H., Batzer A., et al. 1993 The SH2/SH3 doamin containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of rassignalling. EMBO J. 12:1929-1936
26. Moxham C.P., Duronio V., Jacobs S. Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem. 1989;264(22):13238-13244
27. Guevara-Aguirre J., Bautista C., Torres C., et al. Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev Endocr Metab Disord. 2021;22(1):59-70. doi: 10.1007/s11154-020-09602-4
28. Hussain M.A., Schmitz O., Mengel A., et al. 1993. Insulin like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans. J Clin Invest. 92:2249–2256
29. Brismar K., Fernquist-Forbes E., Wahren J., et al. 1994 Effect of insulin on the hepatic production of insulin like growth factor binding protein-1 (IGFBP-1), IGFBP-3 and IGF-I in insulin dependent diabetes. J Clin Endocrinol Metab. 79:872–878
30. Arai Y., Hirose N., Yamamura K., et al. Serum insulin-like growth factor-1 in centenarians: implications of IGF-1 as a rapid turnover protein. J Gerontol A Biol Sci Med Sci. (2001) 56:M79–82. doi: 10.1093/gerona/56.2.M79
31. Deelen J., van den Akker E.B., Trompet S., v et al. Employing biomarkers of healthy ageing for leveraging genetic studies into human longevity. Exp Gerontol. (2016) 82:166–74. doi: 10.1016/j.exger.2016.06.013
32. van der Spoel E., Rozing M.P., Houwing-Duistermaat J.J., et al. Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (2015) 7:956–63. doi: 10.18632/aging.100841
33. Milman S., Atzmon G., Huffman D.M., et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769-771. doi: 10.1111/acel.12213
34. Vitale G., Brugts M., Ogliari G., et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians' offspring. Aging (2012) 4:580–89. doi: 10.18632/aging.100484
35. Horvath S., Pirazzini C., Bacalini M.G., et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (2015) 7:1159–70. doi: 10.18632/aging.100861
36. Bucci L., Ostan R., Cevenini E., et al. Centenarians' offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview. Aging (Albany. NY). (2016) 8:1-11. doi: 10.18632/aging.100912
37. Caselli G., Pozzi L., Vaupel J.W., et al. Family clustering in Sardinian longevity: a genealogical approach. Exp Gerontol. (2006) 41:727-36. doi: 10.1016/j.exger.2006.05.009
38. Suh Y., Atzmon G., Cho M.O., et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA. (2008) 105:3438-42. doi: 10.1073/pnas.0705467105
39. Teumer A., Qi Q., Nethander M., et al. Genomewide metaanalysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. in Aging Cell. 2017 Aug;16(4):898. doi: 10.1111/acel.12612
40. Deelen J., Uh H.W., Monajemi R., et al. Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways. Age (2013) 35:235-49. doi: 10.1007/s11357-011-9340-3
41. van Heemst D., Beekman M., Mooijaart S.P., et al. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell (2005) 4:79-85. doi: 10.1111/j.1474-9728.2005.00148.x
42. He Y.H., Lu X., Yang L.Q., et al. Association of the insulinlike growth factor binding protein 3 (IGFBP-3) polymorphism with longevity in Chinese nonagenarians and centenarians. Aging (Albany NY). 2014;6(11):944-956. doi: 10.18632/aging.100703
43. Ianza A., Sirico M., Bernocchi O., et al. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front Cell Dev Biol. 2021;9:641449. doi: 10.3389/fcell.2021.641449
44. Ragavi R., Muthukumaran P., Nandagopal S., et al. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol. 2023;41(8):340-353. doi: 10.1016/j.urolonc.2023.03.005
45. Song, F., Zhou, XX., Hu, Y. et al. The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther 38, 885–903 (2021). doi: 10.1007/s12325-020-01581-x
46. Schedlich L.J., Graham L.D., O'Han M.K., et al. Molecular basis of the interaction between IGFBP-3 and retinoid X receptor: role in modulation of RAR-signaling. Arch BiochemBiophys. 2007;465(2):359-369. doi: 10.1016/j.abb.2007.06.013
47. de Silva H.C., Lin M.Z., Phillips L., et al. IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer. Cell Mol Life Sci. 2019;76(10):2015- 2030. doi: 10.1007/s00018-019-03033-4
48. Zeng Q., Mousa M., Nadukkandy A.S., et al. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer. 2023;23(8):544-564. doi: 10.1038/s41568-023-00591-5
49. Choi Y.J., Park G.M., Rho J.K., et al. Role of IGF-binding protein 3 in the resistance of EGFR mutant lung cancer cells to EGFRtyrosine kinase inhibitors. PLoS One. 2019 Mar 14;14(3):e0213984. doi: 10.1371/journal.pone.0213984
50. Baxter R.C. Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions. J Cell Commun Signal. 2013;7(3):179-189. doi: 10.1007/s12079-013-0203-9
51. Salzmann A., James S.N., Williams D.M., et al. Investigating the Relationship Between IGF-I, IGF-II, and IGFBP-3 Concentrations and Later-Life Cognition and Brain Volume. J Clin Endocrinol Metab. 2021;106(6):1617-1629. doi: 10.1210/clinem/dgab121
52. Wennberg A.M., Hagen C.E., Machulda M.M., et al. The association between peripheral total IGF-1, IGFBP-3, and IGF-1/ IGFBP-3 and functional and cognitive outcomes in the Mayo Clinic Study of Aging. Neurobiol Aging. 2018;66:68-74. doi: 10.1016/j. neurobiolaging.2017.11.017
53. Drogan D., Schulze M.B., Boeing H., et al. Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor-Binding Protein 3 in Relation to the Risk of Type 2 Diabetes Mellitus: Results From the EPIC-Potsdam Study. Am J Epidemiol. 2016;183(6):553-560. doi: 10.1093/aje/kwv188
54. Stuard W.L., Titone R., Robertson D.M. Tear Levels of IGFBP-3: A Potential Biomarker for Diabetic Nerve Changes in the Cornea. Eye Contact Lens. 2020;46(5):319-325. doi: 10.1097/ICL.0000000000000700
55. Fernández A.M., Kim J.K., Yakar S., et al. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 2001;1515:1926-1934
56. Rajpathak S.N., He M., Sun Q., et al. Insulin-like growth factor axis and risk of type 2 diabetes in women. Diabetes. 2012;61(9):2248- 2254. doi: 10.2337/db11-1488
57. Lindsey R.C., Mohan S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol. 2016;432:44- 55. doi: 10.1016/j.mce.2015.09.017
58. Khade D.M., Bhad W.A., Chavan S.J., Muley A., Shekokar S. Reliability of salivary biomarkers as skeletal maturity indicators: A systematic review. Int Orthod. 2023;21(1):100716. doi: 10.1016/j.ortho.2022.100716
59. Elloumi M., El Elj N., Zaouali M., et al. IGFBP-3, a sensitive marker of physical training and overtraining. Br J Sports Med. 2005;39(9):604-610. doi: 10.1136/bjsm.2004.014183
60. Shi X., Jiang J., Hong R., et al. Circulating IGFBP-3 and Interleukin 6 as Predictors of Osteoporosis in Postmenopausal Women: A Cross-Sectional Study. Mediators Inflamm. 2023;2023:2613766. doi: 10.1155/2023/2613766
Рецензия
Для цитирования:
Ильющенко А.К., Мачехина Л.В., Мельницкая А.А., Стражеско И.Д. Ассоциации ИФР-1 и ИФРСБ-3 со старением и развитием возраст-ассоциированных заболеваний. Проблемы геронауки. 2024;(3):131-140. https://doi.org/10.37586/2949-4745-3-2024-131-140
For citation:
Ilyushchenko A.K., Matchekhina L.V., Melnitskaia A.A., Strazhesko I.D. Associations of IGF-1 and IGFBP-3 with aging and the development of age-associated diseases. Problems of Geroscience. 2024;(3):131-140. (In Russ.) https://doi.org/10.37586/2949-4745-3-2024-131-140