Preview

Problems of Geroscience

Advanced search

Associations of IGF-1 and IGFBP-3 with aging and the development of age-associated diseases

https://doi.org/10.37586/2949-4745-3-2024-131-140

Abstract

Aging is a complex biological process impacting various systems of the body, with changes occurring at molecular, cellular, and physiological levels. This review focuses on the role of insulin-like growth factors (IGFs) and insulinlike growth factor-binding proteins (IGFBPs) in aging process. IGF-1 is crucial for the regulation of cell growth, metabolism, and apoptosis, while IGFBP-3 modulates the bioavailability of IGFs by binding to them and influencing their receptor interactions. This article outlines the mechanisms of action of IGF-1 and IGFBP-3 and discusses clinical research findings on their significance in aging, longevity, and the development of age-associated diseases. A literature search was conducted using Scopus and PubMed databases, focusing on fundamental and clinical studies. The search utilized keywords such as «insulin-like growth factors», «insulin-like growth factor-binding proteins», «aging» and «ageassociated diseases».

About the Authors

A. K. Ilyushchenko
Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
Russian Federation

Ilyushchenko Anna K., MD, internist

Moscow



L. V. Matchekhina
Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
Russian Federation

Machekhina Lubov V., MD, PhD, Head of the Laboratory of Biomarkers of Aging

Moscow



A. A. Melnitskaia
Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
Russian Federation

Melnitskaia Aleksandra A., MD, geriatrician, Junior Researcher, Laboratory of Biomarkers of Aging

Moscow



I. D. Strazhesko
Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University
Russian Federation

Strazhesko Irina D., MD, PhD, Deputy Director for Translational Medicine; Leading Researcher at the Department of Age-Related Diseases, Medical Scientific  and Educational Center of Lomonosov Moscow State University

Moscow



References

1. Dorandish S., Devos J., Clegg B., et al. Biochemical determinants of the IGFBP-3-hyaluronan interaction. FEBS Open Bio. 2020;10(8):1668-1684. doi: 10.1002/2211-5463.12919

2. Shen Y., Zhang J., Zhao Y., et al. Diagnostic value of serum IGF-1 and IGFBP-3 in growth hormone deficiency: a systematic review with meta-analysis. Eur J Pediatr. 2015;174(4):419-427. doi: 10.1007/s00431-014-2406-3

3. Lauszus F. Fetal Growth and Renovascular Function. A Review on Pathophysiology in type 1 Diabetic Pregnancy, 2019. doi: 10.13140/ RG.2.2.18215.19360

4. Lepenies J., Wu Z., Stewart P.M., Strasburger C.J., Quinkler M. IGF-1, IGFBP-3 and ALS in adult patients with chronic kidney disease. Growth Horm IGF Res. 2010;20(2):93-100. doi: 10.1016/j.ghir.2009.10.002

5. Baxter R.C. Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit. Nat Rev Endocrinol. 2024;20(7):414-425. doi: 10.1038/s41574-024-00970-4

6. Arosio M., Garrone S., Bruzzi P., Faglia G., Minuto F., Barreca A. Diagnostic value of the acid-labile subunit in acromegaly: evaluation in comparison with insulin-like growth factor (IGF) I., and IGF-binding protein-1, -2, and -3. J Clin Endocrinol Metab. 2001;86(3):1091-1098. doi: 10.1210/jcem.86.3.7288

7. Baxter R.C. Characterization of the acid-labile subunit of the growth hormone-dependent insulin-like growth factor binding protein complex. J Clin Endocrinol Metab. 1988;67(2):265-272. doi: 10.1210/jcem-67-2-265

8. Baxter R.C. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev. 2023;44(5):753-778. doi: 10.1210/endrev/bnad008

9. Mani A.M., Fenwick M.A., Cheng Z., Sharma M.K., Singh D., Wathes D.C. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction. 2010;139(1):139-151. doi: 10.1530/REP-09-0050

10. Ghafouri-Fard S., Abak A., Mohaqiq M., Shoorei H., Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol. 2021;9:634512. doi: 10.3389/fcell.2021.634512

11. Rudd B.T., Rayner P.H., Thomas P.H. Observations on the role of GH/IGF-1 and sex hormone binding globulin (SHBG) in the pubertal development of growth hormone deficient (GHD) children. Acta Endocrinol Suppl (Copenh). 1986;279:164-169. doi: 10.1530/acta.0.112s164

12. Adams M.L. Differences Between Younger and Older US Adults With Multiple Chronic Conditions. Prev Chronic Dis. 2017;14:E76. doi: 10.5888/pcd14.160613

13. Juul A., Møller S., Mosfeldt-Laursen E., et al. The acidlabile subunit of human ternary insulin-like growth factor binding protein complex in serum: hepatosplanchnic release, diurnal variation, circulating concentrations in healthy subjects, and diagnostic use in patients with growth hormone deficiency. J Clin Endocrinol Metab. 1998;83(12):4408-4415. doi: 10.1210/jcem.83.12.5311

14. Majchrzak-Baczmańska D., Malinowski A. Does IGF-1 play a role in the biology of endometrial cancer? Ginekol Pol. 2016;87(8):598- 604. doi: 10.5603/GP.2016.0052

15. Nicholls A.R., Holt R.I. Growth Hormone and Insulin-Like Growth Factor-1. Front Horm Res. 2016;47:101-114. doi: 10.1159/000445173

16. Allard J.B., Duan C. IGF-binding proteins: why do they exist and why are there so many? Front Endocrinol (Lausanne). 2018;9:117. doi: 10.3389/fendo.2018.00117

17. Mazerbourg S., Monget P. Insulin-Like Growth Factor Binding Proteins and IGFBP Proteases: A Dynamic System Regulating the Ovarian Folliculogenesis. Front Endocrinol (Lausanne). 2018;9:134. doi: 10.3389/fendo.2018.00134

18. Song F., Zhou X.X., Hu Y., Li G., Wang Y. The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther. 2021;38(2):885-903. doi: 10.1007/s12325-020-01581-x

19. Ruiz-Torres A., Soares de Melo Kirzner M. Ageing and longevity are related to growth hormone/insulin-like growth factor-1 secretion. Gerontology. 2002;48(6):401-407. doi: 10.1159/000065507

20. Cai Q., Dozmorov M., Oh Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells. 2020;9(5):1261. doi: 10.3390/cells9051261

21. Vitale, Giovanni & Pellegrino, Giuseppe &Vollery, Maria &Hofland, Leo. (2019). ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians' Perspective. Frontiers in Endocrinology. 10. 27. doi: 10.3389/fendo.2019.00027

22. Paolisso G., Ammendola S., Del Buono A., et al. Serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J Clin Endocrinol Metab. 1997;82(7):2204-2209. doi: 10.1210/jcem.82.7.4087

23. Orskov H. Somatostatin, growth hormone, insulin-like growth factor-1, and diabetes: friends or foes? Metabolism. 1996;45(8 Suppl 1):91-95. doi: 10.1016/s0026-0495(96)90094-3

24. Moses A.C., Young S.C., Morrow L.A., et al. 1996 Recombinant human insulin like growth factor I increases insulin sensitivity and improves glycemic control in type diabetes. Diabetes. 45:91–100

25. Skolink E.Y., Lee C.H., Batzer A., et al. 1993 The SH2/SH3 doamin containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of rassignalling. EMBO J. 12:1929-1936

26. Moxham C.P., Duronio V., Jacobs S. Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem. 1989;264(22):13238-13244

27. Guevara-Aguirre J., Bautista C., Torres C., et al. Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev Endocr Metab Disord. 2021;22(1):59-70. doi: 10.1007/s11154-020-09602-4

28. Hussain M.A., Schmitz O., Mengel A., et al. 1993. Insulin like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans. J Clin Invest. 92:2249–2256

29. Brismar K., Fernquist-Forbes E., Wahren J., et al. 1994 Effect of insulin on the hepatic production of insulin like growth factor binding protein-1 (IGFBP-1), IGFBP-3 and IGF-I in insulin dependent diabetes. J Clin Endocrinol Metab. 79:872–878

30. Arai Y., Hirose N., Yamamura K., et al. Serum insulin-like growth factor-1 in centenarians: implications of IGF-1 as a rapid turnover protein. J Gerontol A Biol Sci Med Sci. (2001) 56:M79–82. doi: 10.1093/gerona/56.2.M79

31. Deelen J., van den Akker E.B., Trompet S., v et al. Employing biomarkers of healthy ageing for leveraging genetic studies into human longevity. Exp Gerontol. (2016) 82:166–74. doi: 10.1016/j.exger.2016.06.013

32. van der Spoel E., Rozing M.P., Houwing-Duistermaat J.J., et al. Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (2015) 7:956–63. doi: 10.18632/aging.100841

33. Milman S., Atzmon G., Huffman D.M., et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769-771. doi: 10.1111/acel.12213

34. Vitale G., Brugts M., Ogliari G., et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians' offspring. Aging (2012) 4:580–89. doi: 10.18632/aging.100484

35. Horvath S., Pirazzini C., Bacalini M.G., et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (2015) 7:1159–70. doi: 10.18632/aging.100861

36. Bucci L., Ostan R., Cevenini E., et al. Centenarians' offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview. Aging (Albany. NY). (2016) 8:1-11. doi: 10.18632/aging.100912

37. Caselli G., Pozzi L., Vaupel J.W., et al. Family clustering in Sardinian longevity: a genealogical approach. Exp Gerontol. (2006) 41:727-36. doi: 10.1016/j.exger.2006.05.009

38. Suh Y., Atzmon G., Cho M.O., et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA. (2008) 105:3438-42. doi: 10.1073/pnas.0705467105

39. Teumer A., Qi Q., Nethander M., et al. Genomewide metaanalysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. in Aging Cell. 2017 Aug;16(4):898. doi: 10.1111/acel.12612

40. Deelen J., Uh H.W., Monajemi R., et al. Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways. Age (2013) 35:235-49. doi: 10.1007/s11357-011-9340-3

41. van Heemst D., Beekman M., Mooijaart S.P., et al. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell (2005) 4:79-85. doi: 10.1111/j.1474-9728.2005.00148.x

42. He Y.H., Lu X., Yang L.Q., et al. Association of the insulinlike growth factor binding protein 3 (IGFBP-3) polymorphism with longevity in Chinese nonagenarians and centenarians. Aging (Albany NY). 2014;6(11):944-956. doi: 10.18632/aging.100703

43. Ianza A., Sirico M., Bernocchi O., et al. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front Cell Dev Biol. 2021;9:641449. doi: 10.3389/fcell.2021.641449

44. Ragavi R., Muthukumaran P., Nandagopal S., et al. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol. 2023;41(8):340-353. doi: 10.1016/j.urolonc.2023.03.005

45. Song, F., Zhou, XX., Hu, Y. et al. The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther 38, 885–903 (2021). doi: 10.1007/s12325-020-01581-x

46. Schedlich L.J., Graham L.D., O'Han M.K., et al. Molecular basis of the interaction between IGFBP-3 and retinoid X receptor: role in modulation of RAR-signaling. Arch BiochemBiophys. 2007;465(2):359-369. doi: 10.1016/j.abb.2007.06.013

47. de Silva H.C., Lin M.Z., Phillips L., et al. IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer. Cell Mol Life Sci. 2019;76(10):2015- 2030. doi: 10.1007/s00018-019-03033-4

48. Zeng Q., Mousa M., Nadukkandy A.S., et al. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer. 2023;23(8):544-564. doi: 10.1038/s41568-023-00591-5

49. Choi Y.J., Park G.M., Rho J.K., et al. Role of IGF-binding protein 3 in the resistance of EGFR mutant lung cancer cells to EGFRtyrosine kinase inhibitors. PLoS One. 2019 Mar 14;14(3):e0213984. doi: 10.1371/journal.pone.0213984

50. Baxter R.C. Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions. J Cell Commun Signal. 2013;7(3):179-189. doi: 10.1007/s12079-013-0203-9

51. Salzmann A., James S.N., Williams D.M., et al. Investigating the Relationship Between IGF-I, IGF-II, and IGFBP-3 Concentrations and Later-Life Cognition and Brain Volume. J Clin Endocrinol Metab. 2021;106(6):1617-1629. doi: 10.1210/clinem/dgab121

52. Wennberg A.M., Hagen C.E., Machulda M.M., et al. The association between peripheral total IGF-1, IGFBP-3, and IGF-1/ IGFBP-3 and functional and cognitive outcomes in the Mayo Clinic Study of Aging. Neurobiol Aging. 2018;66:68-74. doi: 10.1016/j. neurobiolaging.2017.11.017

53. Drogan D., Schulze M.B., Boeing H., et al. Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor-Binding Protein 3 in Relation to the Risk of Type 2 Diabetes Mellitus: Results From the EPIC-Potsdam Study. Am J Epidemiol. 2016;183(6):553-560. doi: 10.1093/aje/kwv188

54. Stuard W.L., Titone R., Robertson D.M. Tear Levels of IGFBP-3: A Potential Biomarker for Diabetic Nerve Changes in the Cornea. Eye Contact Lens. 2020;46(5):319-325. doi: 10.1097/ICL.0000000000000700

55. Fernández A.M., Kim J.K., Yakar S., et al. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 2001;1515:1926-1934

56. Rajpathak S.N., He M., Sun Q., et al. Insulin-like growth factor axis and risk of type 2 diabetes in women. Diabetes. 2012;61(9):2248- 2254. doi: 10.2337/db11-1488

57. Lindsey R.C., Mohan S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol. 2016;432:44- 55. doi: 10.1016/j.mce.2015.09.017

58. Khade D.M., Bhad W.A., Chavan S.J., Muley A., Shekokar S. Reliability of salivary biomarkers as skeletal maturity indicators: A systematic review. Int Orthod. 2023;21(1):100716. doi: 10.1016/j.ortho.2022.100716

59. Elloumi M., El Elj N., Zaouali M., et al. IGFBP-3, a sensitive marker of physical training and overtraining. Br J Sports Med. 2005;39(9):604-610. doi: 10.1136/bjsm.2004.014183

60. Shi X., Jiang J., Hong R., et al. Circulating IGFBP-3 and Interleukin 6 as Predictors of Osteoporosis in Postmenopausal Women: A Cross-Sectional Study. Mediators Inflamm. 2023;2023:2613766. doi: 10.1155/2023/2613766


Review

For citations:


Ilyushchenko A.K., Matchekhina L.V., Melnitskaia A.A., Strazhesko I.D. Associations of IGF-1 and IGFBP-3 with aging and the development of age-associated diseases. Problems of Geroscience. 2024;(3):131-140. (In Russ.) https://doi.org/10.37586/2949-4745-3-2024-131-140

Views: 257


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0.


ISSN 2949-4745 (Print)
ISSN 2949-4753 (Online)