Preview

Проблемы геронауки

Расширенный поиск

Неалкогольная жировая болезнь печени и остеопороз: двунаправленная связь

https://doi.org/10.37586/2949-4745-4-2024-171-180

Аннотация

Остеопороз является серьезной проблемой для здравоохранения во всем мире, характеризуется низкой минеральной плотностью кости (МПК) и нарушением микроархитектоники костной ткани, что приводит к увеличению частоты низкотравматичных переломов. Остеопороз чаще выявляют у пожилых людей, но он может возникнуть и в более раннем возрасте вследствие нарушения усвоения кальция и витамина Д при различных желудочно-кишечных (ЖКТ) заболеваниях.

Неалкогольная жировая болезнь печени (НАЖБП) является фактором риска снижения минеральной плотности кости (МПК). Представлены новые данные о патофизиологических изменениях костной ткани при НАЖБП: высвобождение воспалительных цитокинов, снижение секреции молекул, непосредственно влияющих на кость, нарушение метаболизма витамина D, нарушение кишечной микробиоты. НАЖБП является фактором риска снижения МПК.

Подтверждение физиологической значимости НАЖБП в отношении риска остеопоротических переломов костей требует дальнейшего изучения. Возможно, обязательный скрининг остеопороза и наблюдение за состоянием костей у пациентов с НАЖБП будет возможен в будущих стратегиях и руководствах.

Об авторах

Е. Н. Дудинская
ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России (Пироговский Университет), ОСП «Российский геронтологический научно-клинический центр», Лаборатория возрастных метаболических и эндокринных заболеваний; ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России (Пироговский Университет), Кафедра болезней старения Института непрерывного образования и профессионального развития ФДПО
Россия

Дудинская Екатерина Наильевна

Москва



Ю. С. Онучина
ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России (Пироговский Университет), ОСП «Российский геронтологический научно-клинический центр», Лаборатория возрастных метаболических и эндокринных заболеваний
Россия

Москва



Список литературы

1. Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clin Interv Aging. 2018 Oct 4;13:1879-1891. doi: 10.2147/CIA.S170533

2. Zhu X, Yan H, Chang X, Xia M, Zhang L, Wang L, Sun X, Yang X, Gao X, Bian H. Association between non-alcoholic fatty liver disease-associated hepatic fibrosis and bone mineral density in postmenopausal women with type 2 diabetes or impaired glucose regulation. BMJ Open Diabetes Res Care. 2020 Aug;8(1):e000999. doi: 10.1136/bmjdrc-2019-000999.

3. Mikami K, Endo T, Sawada N, Igarashi G, Kimura M, Hasegawa T, Iino C, Sawada K, Nakaji S, Ishibashi Y, Matsuzaka M, Fukuda S. Association of Bone Metabolism with Fatty Liver Disease in the Elderly in Japan: A Community-based Study. Intern Med. 2020 May 15;59(10):1247-1256. doi: 10.2169/internalmedicine.3906-19.

4. Chen HJ, Yang HY, Hsueh KC, Shen CC, Chen RY, Yu HC, Wang TL. Increased risk of osteoporosis in patients with nonalcoholic fatty liver disease: A population-based retrospective cohort study. Medicine (Baltimore). 2018 Oct;97(42):e12835. doi: 10.1097/MD.0000000000012835.

5. Rosato V, Masarone M, Dallio M, Federico A, Aglitti A, Persico M. NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome. Int J Environ Res Public Health. 2019 Sep 14;16(18):3415. doi: 10.3390/ijerph16183415

6. Bartke A. Growth hormone and aging: Updated review. World J Mens Health. 2019;37(1):19-30. https://doi.org/10.5534/wjmh.180018

7. Liang S, Cheng X, Hu Y, Song R, Li G. Insulin-like growth factor 1 and metabolic parameters are associated with nonalcoholic fatty liver disease in obese children and adolescents. Acta Paediatr (2017) 106:298–303. doi: 10.1111/apa.13685

8. Dichtel LE, Corey KE, Misdraji J, Bredella MA, Schorr M, Osganian SA, et al.. The association between IGF-1 levels and the histologic severity of nonalcoholic fatty liver disease. Clin Transl Gastroenterol (2017) 8:e217. doi: 10.1038/ctg.2016.72 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Yao Y, Miao X, Zhu D, Li D, Zhang Y, Song C, et al.. Insulin-like growth factor-1 and non-alcoholic fatty liver disease: A systemic review and meta-analysis. Endocrine (2019) 65:227–37. doi: 10.1007/s12020-019-01982-1

10. Ravn P, Overgaard K, Spencer EM, Christiansen C. Insulin-like growth factors I and II in healthy women with and without established osteoporosis. Eur J Endocrinol (1995) 132:313–9. doi: 10.1530/eje.0.1320313

11. Kurland ES, Chan FK, Rosen CJ, Bilezikian JP. Normal growth hormone secretory reserve in men with idiopathic osteoporosis and reduced circulating levels of insulin-like growth factor-I. J Clin Endocrinol Metab (1998) 83:2576–9. doi: 10.1210/jcem.83.7.4971

12. Szulc, P. Bone turnover: Biology and assessment tools. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 725–738. [Google Scholar] [CrossRef]

13. Luger, M.; Kruschitz, R.; Kienbacher, C.; Traussnigg, S.; Langer, F.B.; Schindler, K.; Würger, T.; Wrba, F.; Trauner, M.; Prager, G.; et al. Prevalence of Liver Fibrosis and its Association with Non-invasive Fibrosis and Metabolic Markers in Morbidly Obese Patients with Vitamin D Deficiency. Obes. Surg. 2016, 26, 2425–2432. [Google Scholar] [CrossRef]

14. Bukhari, T.; Jafri, L.; Majid, H.; Khan, A.H.H.; Siddiqui, I. Determining Bone Turnover Status in Patients With Chronic Liver Disease. Cureus 2021, 13, e14479. [Google Scholar] [CrossRef]

15. Wang, N.; Wang, Y.; Chen, X. Bone turnover markers and probable advanced nonalcoholic fatty liver disease in middle-aged and elderly men and postmenopausal women with type 2 diabetes. Front. Endocrinol. 2020, 10, 926. [Google Scholar] [CrossRef]

16. Caserza, L.; Casula, M.; Elia, E.; Bonaventura, A.; Liberale, L.; Bertolotto, M.; Artom, N.; Minetti, S.; Contini, P.; Verzola, D.; et al. Serum osteopontin predicts glycaemic profile improvement in metabolic syndrome: A pilot study. Eur. J. Clin. Investig. 2021, 51, e13403. [Google Scholar] [CrossRef]

17. Veidal, S.S.; Vassiliadis, E.; Bay-Jensen, A.C.; Tougas, G.; Vainer, B.; Karsdal, M.A. Procollagen type I N-terminal propeptide (PINP) is a marker for fibrogenesis in bile duct ligation-induced fibrosis in rats. Fibrogenesis Tissue Repair 2010, 3, 5. [Google Scholar] [CrossRef] [PubMed]

18. Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017 Jun;66(6):1138-1153. doi: 10.1136/gutjnl-2017-313884

19. Yilmaz Y. Review article: non-alcoholic fatty liver disease and osteoporosis--clinical and molecular crosstalk. Aliment Pharmacol Ther. 2012 Aug;36(4):345-52. doi: 10.1111/j.1365-2036.2012.05196.x.

20. Poggiogalle E, Donini LM, Lenzi A, Chiesa C, Pacifico L. Non-alcoholic fatty liver disease connections with fat-free tissues: A focus on bone and skeletal muscle. World J Gastroenterol. 2017 Mar 14;23(10):1747-1757. doi: 10.3748/wjg.v23.i10.1747

21. Sung J, Ryu S, Song YM, Cheong HK. Relationship Between Non-alcoholic Fatty Liver Disease and Decreased Bone Mineral Density: A Retrospective Cohort Study in Korea. J Prev Med Public Health. 2020 Sep;53(5):342-352. doi: 10.3961/jpmph.20.089.

22. Chen DZ, Xu QM, Wu XX, Cai C, Zhang LJ, Shi KQ, Shi HY, Li LJ. The Combined Effect of Nonalcoholic Fatty Liver Disease and Metabolic Syndrome on Osteoporosis in Postmenopausal Females in Eastern China. Int J Endocrinol. 2018 Jul 29;2018:2314769. doi: 10.1155/2018/2314769.

23. Tai, T.Y.; Chen, C.L.; Tsai, K.S.; Tu, S.T.; Wu, J.S.; Yang, W.S. A longitudinal analysis of serum adiponectin levels and bone mineral density in postmenopausal women in Taiwan. Sci. Rep. 2022, 12, 8090. [Google Scholar] [CrossRef]

24. Sandhya, N.; Gokulakrishnan, K.; Ravikumar, R.; Mohan, V.; Balasubramanyam, M. Association of hypoadiponectinemia with hypoglutathionemia in NAFLD subjects with and without type 2 diabetes. Dis. Markers 2010, 29, 213–221. [Google Scholar] [CrossRef]

25. Ramezani-Moghadam, M.; Wang, J.; Ho, V.; Iseli, T.J.; Alzahrani, B.; Xu, A.; Van der Poorten, D.; Qiao, L.; George, J.; Hebbard, L. Adiponectin reduces hepatic stellate cell migration by promoting tissue inhibitor of metalloproteinase-1 (TIMP-1) secretion. J. Biol. Chem. 2015, 290, 5533–5542. [Google Scholar] [CrossRef] [PubMed]

26. Burkhardt, L.M.; Bucher, C.H.; Löffler, J.; Rinne, C.; Duda, G.N.; Geissler, S.; Schulz, T.J.; Schmidt-Bleek, K. The benefits of adipocyte metabolism in bone health and regeneration. Front. Cell. Dev. Biol. 2023, 11, 1104709. [Google Scholar] [CrossRef] [PubMed]

27. Gamberi, T.; Magherini, F.; Modesti, A.; Fiaschi, T. Adiponectin Signaling Pathways in Liver Diseases. Biomedicines 2018, 6, 52. [Google Scholar] [CrossRef] [PubMed]

28. Alzahrani, B.; Iseli, T.; Ramezani-Moghadam, M.; Ho, V.; Wankell, M.; Sun, E.J.; Qiao, L.; George, J.; Hebbard, L.W. The role of AdipoR1 and AdipoR2 in liver fibrosis. Biochim. Biophys. Acta 2018, 1864, 700–708. [Google Scholar] [CrossRef]

29. Xu, H.; Zhao, Q.; Song, N.; Yan, Z.; Lin, R.; Wu, S.; Jiang, L.; Hong, S.; Xie, J.; Zhou, H.; et al. AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum-mitochondria axis. Nat. Commun. 2020, 11, 5807, Erratum in Nat. Commun. 2021, 12, 2036. [Google Scholar] [CrossRef] [PubMed]

30. Okada-Iwabu, M.; Yamauchi, T.; Iwabu, M.; Honma, T.; Hamagami, K.; Matsuda, K.; Yamaguchi, M.; Tanabe, H.; Kimura-Someya, T.; Shirouzu, M.; et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 2013, 503, 493–499. [Google Scholar] [CrossRef] [PubMed]

31. Kim, Y.; Lim, J.H.; Kim, M.Y.; Kim, E.N.; Yoon, H.E.; Shin, S.J.; Choi, B.S.; Kim, Y.S.; Chang, Y.S.; Park, C.W. The Adiponectin Receptor Agonist AdipoRon Ameliorates Diabetic Nephropathy in a Model of Type 2 Diabetes. J. Am. Soc. Nephrol. 2018, 29, 1108–1127. [Google Scholar] [CrossRef] [PubMed]

32. Adhyatmika, A.; Beljaars, L.; Putri, K.S.S.; Habibie, H.; Boorsma, C.E.; Reker-Smit, C.; Luangmonkong, T.; Guney, B.; Haak, A.; Mangnus, K.A.; et al. Osteoprotegerin Is more than a Possible Serum Marker in Liver Fibrosis: A Study into Its Function in Human and Murine Liver. Pharmaceutics 2020, 12, 471. [Google Scholar] [CrossRef]

33. Kleerekoper, M.; Nelson, D.A.; Peterson, E.L.; Wilson, P.S.; Jacobsen, G.; Longcope, C. Body composition and gonadal steroids in older white and black women. J. Clin. Endocrinol. Metab. 1994, 79, 775–779. [Google Scholar] [CrossRef]

34. Di, F.; Gao, D.; Yao, L.; Zhang, R.; Qiu, J.; Song, L. Differences in metabonomic profiles of abdominal subcutaneous adipose tissue in women with polycystic ovary syndrome. Front. Endocrinol. 2023, 14, 1077604. [Google Scholar] [CrossRef]

35. Ward, L.J.; Nilsson, S.; Hammar, M.; Lindh-Åstrand, L.; Berin, E.; Lindblom, H.; Spetz Holm, A.C.; Rubér, M.; Li, W. Resistance training decreases plasma levels of adipokines in postmenopausal women. Sci. Rep. 2020, 10, 19837. [Google Scholar] [CrossRef]

36. Caserza, L.; Casula, M.; Elia, E.; Bonaventura, A.; Liberale, L.; Bertolotto, M.; Artom, N.; Minetti, S.; Contini, P.; Verzola, D.; et al. Serum osteopontin predicts glycaemic profile improvement in metabolic syndrome: A pilot study. Eur. J. Clin. Investig. 2021, 51, e13403. [Google Scholar] [CrossRef]

37. Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, et al.. Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest (2014) 124:515–27. doi: 10.1172/JCI67353 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. 41. Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, et al.. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab (2013) 17:779–89. doi: 10.1016/j.cmet.2013.04.005

39. Talukdar S, Zhou Y, Li D, Rossulek M, Dong J, Somayaji V, et al.. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab (2016) 23:427–40. doi: 10.1016/j.cmet.2016.02.001

40. Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, et al.. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U.S.A. (2012) 109:3143–8. doi: 10.1073/pnas.1200797109

41. Staiger H, Keuper M, Berti L, Hrabe de Angelis M, Haring HU. Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev (2017) 38:468–88. doi: 10.1210/er.2017-00016

42. Lu, L.; Chen, X.; Liu, Y.; Yu, X. Gut microbiota and bone metabolism. FASEB J. 2021, 35, e21740. [Google Scholar] [CrossRef] [PubMed]

43. Yan, Q.; Cai, L.; Guo, W. New Advances in Improving Bone Health Based on Specific Gut Microbiota. Front. Cell. Infect. Microbiol. 2022, 12, 821429. [Google Scholar] [CrossRef] [PubMed]

44. Wu, X.; Zhao, K.; Fang, X.; Lu, F.; Zhang, W.; Song, X.; Chen, L.; Sun, J.; Chen, H. Inhibition of Lipopolysaccharide-Induced Inflammatory Bone Loss by Saikosaponin D is Associated with Regulation of the RANKL/RANK Pathway. Drug Des. Devel Ther. 2021, 15, 4741–4757. [Google Scholar] [CrossRef] [PubMed]

45. Li, L.; Rao, S.; Cheng, Y.; Zhuo, X.; Deng, C.; Xu, N.; Zhang, H.; Yang, L. Microbial osteoporosis: The interplay between the gut microbiota and bones via host metabolism and immunity. Microbiologyopen 2019, 8, e00810. [Google Scholar] [CrossRef] [PubMed]

46. Grüner, N.; Ortlepp, A.L.; Mattner, J. Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut-Bone Physiology. Int. J. Mol. Sci. 2023, 24, 5161. [Google Scholar] [CrossRef]

47. Ji, Y.; Yin, Y.; Li, Z.; Zhang, W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2019, 11, 1712. [Google Scholar] [CrossRef]

48. Краткое изложение проекта федеральных клинических рекомендаций по остеопорозу / Ж. Е. Белая, Л. Я. Рожинская, Т. А. Гребенникова [и др.] // Остеопороз и остеопатии. – 2020. – Т. 23. – № 2. – С. 4-21. – DOI 10.14341/osteo12710.

49. Targher G, Bertolini L, Scala L, et al. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2007; 17: 517–24.

50. Barchetta I, Angelico F, Del Ben M, et al. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med 2011; 9: 85.

51. Musio A, Perazza F, Leoni L, Stefanini B, Dajti E, Menozzi R, Petroni ML, Colecchia A, Ravaioli F. Osteosarcopenia in NAFLD/MAFLD: An Underappreciated Clinical Problem in Chronic Liver Disease. Int J Mol Sci. 2023 Apr 19;24(8):7517. doi: 10.3390/ijms24087517. PMID: 37108675; PMCID: PMC10139188.

52. Drapkina OM, Elkina AY, Sheptulina AF, Kiselev AR. Non-Alcoholic Fatty Liver Disease and Bone Tissue Metabolism: Current Findings and Future Perspectives. Int J Mol Sci. 2023 May 8;24(9):8445. doi: 10.3390/ijms24098445. PMID: 37176153; PMCID: PMC10178980.


Рецензия

Для цитирования:


Дудинская Е.Н., Онучина Ю.С. Неалкогольная жировая болезнь печени и остеопороз: двунаправленная связь. Проблемы геронауки. 2024;(4):171-180. https://doi.org/10.37586/2949-4745-4-2024-171-180

For citation:


Dudinskaya E.N., Onuchina Yu.S. Non-alcoholic fatty liver disease and osteoporosis: a bi-directional association. Problems of Geroscience. 2024;(4):171-180. (In Russ.) https://doi.org/10.37586/2949-4745-4-2024-171-180

Просмотров: 421


ISSN 2949-4745 (Print)
ISSN 2949-4753 (Online)