Preview

Problems of Geroscience

Advanced search

The role of oxidative stress in the development of neurodegenerative diseases

https://doi.org/10.37586/2949-4745-2-2025-67-75

Abstract

The global population is undergoing rapid ageing, with increasing life expectancy resulting in a proliferation of age-related health problems. An increasing number of people are becoming vulnerable to neurodegenerative diseases on an annual basis. These diseases are characterised by a progressive loss of nerve cells, motor or cognitive impairment, and the accumulation of abnormally aggregated proteins. A substantial body of research has demonstrated that oxidative stress can exert a multifaceted role in the development of diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS), in addition to contributing to their progression and exacerbating the overall condition of patients. Mitochondrial dysfunction is a hallmark of the ageing process, particularly in organs that require high energy, such as the heart, muscles, brain, and liver. The brain is particularly vulnerable to free radical damage due to its high oxygen demand, limited antioxidant protection, and high content of polyunsaturated fatty acids, which are highly susceptible to oxidation. Nevertheless, the precise mechanism through which neurodegenerative diseases associated with disturbances in redox balance develop remains to be elucidated. A more profound comprehension of the molecular mechanisms associated with oxidative stress and neurodegeneration may facilitate the identification of novel avenues for the development of effective methods of prevention and treatment, which will have a favourable impact on the health of society.

About the Authors

A. I. Dudinova
Pirogov Russian National Research Medical University, Russian Gerontology Research and Clinical Centre
Россия

Dudinova Anna Igorevna 

Moscow 



M. S. Legenko
Pirogov Russian National Research Medical University, Russian Gerontology Research and Clinical Centre
Россия

Moscow 



I. D. Strazhesko
Pirogov Russian National Research Medical University, Russian Gerontology Research and Clinical Centre
Россия

Moscow 



References

1. Zhang X., Lee W., Bian J. S. Recent Advances in the Study of Na+/K+-ATPase in Neurodegenerative Diseases. Cells. 2022; 11 (24): 4075. Published 2022 Dec 16. DOI: 10.3390/cells11244075.

2. Abdelhamid R. F., Nagano S. Crosstalk between Oxidative Stress and Aging in Neurodegeneration Disorders. Cells. 2023; 12 (5): 753. Published 2023 Feb 27. DOI: 10.3390/cells12050753.

3. Liu Z., Zhou T., Ziegler A. C., Dimitrion P., Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid Med Cell Longev. 2017; 2017: 2525967. DOI: 10.1155/2017/2525967.

4. Shusharina N, Yukhnenko D, Botman S, Sapunov V, Savinov V, Kamyshov G, Sayapin D, Voznyuk I. Modern Methods of Diagnostics and Treatment of Neurodegenerative Diseases and Depression. Diagnostics. 2023; 13 (3): 573. DOI: 10.3390/diagnostics13030573.

5. Gadhave D. G., Sugandhi V. V., Jha S. K., et al. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev. 2024; 99: 102357. DOI: 10.1016/j.arr.2024.102357.

6. Shin J. H. Dementia Epidemiology Fact Sheet 2022. Ann Rehabil Med. 2022; 46 (2): 53–59. DOI: 10.5535/arm.22027.

7. Kurbanova M. M., Galayeva A. A., Stefanovskaya Y. V., Suvorkina A. A., Alikhanov N. M. Modern methods for the diagnosis of cognitive impairment. Russian Family Doctor. 2020; 24 (1): 35–44. (In Russ.) DOI: 10.17816/RFD18986.

8. Gandhi S., Abramov A. Y. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012; 2012: 428010. DOI: 10.1155/2012/428010.

9. Kim G. H., Kim J. E., Rhie S. J., Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp Neurobiol. 2015; 24 (4): 325–340. DOI: 10.5607/en.2015.24.4.325.

10. Cenini G., Lloret A., Cascella R. Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. Oxid Med Cell Longev. 2019; 2019: 2105607. Published 2019 May 9. DOI: 10.1155/2019/2105607.

11. Singh A., Kukreti R., Saso L., Kukreti S. Oxidative Stress: AKey Modulator in Neurodegenerative Diseases. Molecules. 2019; 24 (8): 1583. Published 2019 Apr 22. DOI: 10.3390/molecules24081583.

12. Teleanu D. M., Niculescu A. G., Lungu I. I., et al. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int J Mol Sci. 2022; 23 (11): 5938. Published 2022 May 25. DOI: 10.3390/ijms23115938.

13. Ulashchik V. S. Active oxygen species, antioxidants, and the action of therapeutic physical factors. Problems of Balneology, Physiotherapy and Exercise Therapy. 2013; 90 (1): 60–69. (In Russ.) DOI: 10.17116/kurort20209706133.

14. Novikov V. E., Levchenkova O. S., Pozhilova Y. V. Role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation. Reviews on Clinical Pharmacology and Drug Therapy. 2014; 12 (4): 13–21. (In Russ.) DOI: 10.17816/RCF12413-21.

15. Jomova K., Raptova R., Alomar S. Y., et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023; 97 (10): 2499–2574. DOI: 10.1007/s00204-023-03562-9.

16. Rekatsina M., Paladini A., Piroli A., Zis P., Pergolizzi J. V., Varrassi G. Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv Ther. 2020; 37 (1): 113–139. DOI: 10.1007/s12325-019-01148-5.

17. Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci. 2021; 22 (21): 11847. Published 2021 Oct 31. DOI: 10.3390/ijms222111847.

18. Huang W. J., Zhang X., Chen W. W. Role of oxidative stress in Alzheimer's disease. Biomed Rep. 2016; 4 (5): 519–522. DOI: 10.3892/br.2016.630.

19. Breijyeh Z., Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules. 2020; 25 (24): 5789. Published 2020 Dec 8. DOI: 10.3390/molecules25245789.

20. Sumien N., Cunningham J. T., Davis D. L., et al. Neurodegenerative Disease: Roles for Sex, Hormones, and Oxidative Stress. Endocrinology. 2021; 162 (11): bqab185. DOI: 10.1210/endocr/bqab185.

21. Song T., Song X., Zhu C., et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev. 2021; 72: 101503. DOI: 10.1016/j.arr.2021.101503.

22. Zhu X., Raina A. K., Lee H. G., Casadesus G., Smith M. A., Perry G. Oxidative stress signalling in Alzheimer's disease. Brain Res. 2004; 1000 (1–2): 32–39. DOI: 10.1016/j.brainres.2004.01.012.

23. Bai R., Guo J., Ye X. Y., Xie Y., Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev. 2022; 77: 101619. DOI: 10.1016/j.arr.2022.101619.

24. Imbriani P., Martella G., Bonsi P., Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis. 2022; 173: 105851. DOI: 10.1016/j.nbd.2022.105851.

25. Bej E., Cesare P., Volpe A. R., d'Angelo M., Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int. 2024; 16 (3): 502–517. Published 2024 Apr 29. DOI: 10.3390/neurolint16030037.

26. Dorszewska J., Kowalska M., Prendecki M., Piekut T., Kozłowska J., Kozubski W. Oxidative stress factors in Parkinson's disease. Neural Regen Res. 2021; 16 (7): 1383–1391. DOI: 10.4103/1673-5374.300980.

27. Rizea R. E., Corlatescu A. D., Costin H. P., Dumitru A., Ciurea A. V. Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances. Int J Mol Sci. 2024; 25 (18): 9966. Published 2024 Sep 15. DOI: 10.3390/ijms25189966.

28. Cunha-Oliveira T., Montezinho L., Mendes C., et al. Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. Oxid Med Cell Longev. 2020; 2020: 5021694. Published 2020 Nov 15. DOI: 10.1155/2020/5021694.

29. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021; 17 (3): 327–406. DOI: 10.1002/alz.12328.

30. Dumas A., Destrebecq F., Esposito G., Suchonova D., Steen Frederiksen K. Rethinking the detection and diagnosis of Alzheimer's disease: Outcomes of a European Brain Council project. Aging Brain. 2023; 4: 100093. Published 2023 Sep 2. DOI: 10.1016/j.nbas.2023.100093.

31. Zhang Q., Zhao W., Li S., Ding Y., Wang Y., Ji X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int J Med Sci. 2023; 20 (12): 1551–1561. Published 2023 Sep 18. DOI: 10.7150/ijms.86622.

32. Lanni I., Chiacchierini G., Papagno C., Santangelo V., Campolongo P. Treating Alzheimer's disease with brain stimulation: From preclinical models to non-invasive stimulation in humans. Neurosci Biobehav Rev. 2024; 165: 105831. DOI: 10.1016/j.neubiorev.2024.105831.


Review

For citations:


Dudinova A.I., Legenko M.S., Strazhesko I.D. The role of oxidative stress in the development of neurodegenerative diseases. Problems of Geroscience. 2025;(2):67-75. (In Russ.) https://doi.org/10.37586/2949-4745-2-2025-67-75

Views: 28

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0.


ISSN 2949-4745 (Print)
ISSN 2949-4753 (Online)