Эпигенетика старения: основные механизмы
https://doi.org/10.37586/2949-4745-2-2023-88-93
Аннотация
Старение является комплексным биологическим процессом, на который влияет множество факторов, включая генетические, средовые и поведенческие. Последние исследования показывают, что эпигенетические изменения играют важную роль в процессе старения, так как они регулируют генную экспрессию и влияют на клеточные функции. К эпигенетическим модификациям относятся метилирование ДНК, модификации гистонов, экспрессия некодирующей РНК и другие механизмы. В обзоре обсуждается роль метилирования ДНК в регуляции генной экспрессии и его связь с возраст-ассоциированными заболеваниями, включая онкологические и нейродегенеративные заболевания. Также в статье обсуждается роль модификаций гистонов и их влияние на структуру хроматина и экспрессию генов. Дополнительно обзор затрагивает участие молекулярных признаков старения в развитии возраст-ассоциированных заболеваний. Понимание роли эпигенетических механизмов в старении критически важно для поиска новых вмешательств, способных замедлить процессы старения.
Об авторах
И. Д. СтражескоРоссия
Ирина Дмитриевна Стражеско, д-р мед. наук, заместитель директора по трансляционной медицине, ведущий научный сотрудник
медицинский научно-образовательный центр
отдел возраст-ассоциированных заболеваний
Москва
Телефон: +7(903)5204154
А. П. Есакова
Россия
Антонина Павловна Есакова, ассистент
кафедра медицинской генетики
Москва
Телефон: +7(906)7020713
А. А. Акопян
Россия
Анна Александровна Акопян, младший научный сотрудник
лаборатория биомаркеров старения
Москва
Телефон: +7(903)7455788
О. Н. Ткачева
Россия
Ольга Николаевна Ткачева, член-корреспондент РАН, д-р мед. наук, профессор, директор
Москва
Телефон: +7(499)1876467
Список литературы
1. Всемирная организация здравоохранения, всемирный доклад о старении и здоровье, 2015 https://apps.who.int/iris/bitstream/handle/10665/186468/WHO_FWC_ALC_15.01_rus.pdf;jsessionid=55584A04FF0D7A5B02FABB96922C2097?sequence=3
2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023 Jan 19;186(2):243–278. doi: 10.1016/j.cell.2022.11.001.
3. Flavahan W.A., Gaskell E., Bernstein B.E. Epigenetic plasticity and the hallmarks of cancer. Science. 2017; 357:eaal2380. PMID: 28729483
4. Lévesque M.L., Casey K.F., Szyf M. et al. Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics. 2014;9(10):1410–21. PMID: 25437055
5. Martin G.M. Epigenetic drift in aging identical twins. Proc Natl Acad Sci USA. 2005;102(30):10413–4. PMID: 16027353
6. Fraga M.F., Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23(8):413–8. doi: 10.1016/j.tig.2007.05.008.
7. Holliday R., Pugh J.E. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–32. PMID: 1111098.
8. Bamman M.M., Brooks J.D., Myers R.M., Absher D. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013;14(9):R102. doi: 10.1186/gb-2013-14-9-r102.
9. Li E., Beard C., Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362–5. doi: 10.1038/366362a0. PMID: 8247133.
10. Ehrlich M., Gama-Sosa M.A., Huang L-H., Midgett R.M., Kuo K.C., McCune R.A. et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 1982;10:2709–21. doi: 10.1093/nar/10.8.2709
11. Vanyushin, B.F., Korotaev, G.K., Mazin, A.L. and Berdishev, G.D. Investigation of some characteristics of the primary and secondary structure of DNA from the liver of spawning humpback salmon. Biochemistry (Mosc.). 1969; 34:191–198. PMID: 5801319.
12. Wilson V.L. and Jones P.A. DNA methylation decreases in aging but not in immortal cells. Science. 1983; 220:1055–105. doi: 10.1126/science.6844925
13. Heyn H., Li N., Ferreira H.J., Moran S., Pisano D.G., Gomez A. et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109:10522–7. doi: 10.1073/pnas.1120658109.
14. Wilson V.L. and Jones P.A. DNA methylation decreases in aging but not in immortal cells. Science. 1983; 220: 1055–1057. doi: 10.1126/science.6844925. PMID: 6844925.
15. Issa J-PJ., Ottaviano Y.L., Celano P., Hamilton S.R., Davidson N.E., Baylin S.B. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994; 7:536–40. doi: 10.1038/ng0894-536.
16. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi: 10.1186/gb-2013-14-10-r115
17. Hannum G., Guinney J., Zhao L., Zhang L., Hughes G., Sadda S., Klotzle B., Bibikova M., Fan J.B., Gao Y. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell. 2013; 49:359–367. doi: 10.1016/j.molcel.2012.10.016
18. El Khoury L.Y., Gorrie-Stone T., Smart M. et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 2019;20:283 doi:10.1186/s13059-019-1810-4
19. Lu A.T., Quach A., Wilson J.G. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–327. doi: 10.18632/aging.101684
20. Levine M.E., Lu A.T., Quach A. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573- 591. doi: 10.18632/aging.101414
21. Holliday R. The inheritance of epigenetic defects. Science.1987; 238:163–170. doi: 10.1126/science.3310230
22. Southworth L. K., Owen A. B. and Kim S. K. Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet. 2009; 5:e1000776. doi: 10.1371/journal.pgen.1000776
23. Gut P. and Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature.2013; 502:489–498. doi: 10.1038/nature12752. PMID: 24153302.
24. Seong K. H., Li D., Shimizu H., Nakamura R., Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell. 2011;145:1049–1061. doi: 10.1016/j.cell.2011.05.029
25. Shumaker D.K., Dechat T., Kohlmaier A., Adam S.A., Bozovsky M.R., Erdos M.R., Eriksson M., Goldman A.E., Khuon S., Collins F.S. et al Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging.Proc.Natl.Acad.Sci.USA. 2006; 103: 8703–8708. doi: 10.1073/pnas.0602569103
26. Oberdoerffer P., Sinclair D.A. The role of nuclear architecture in genomic instability and ageing.Nat. Rev. Mol. Cell Biol. 2007; 8: 692–702. doi: 10.1038/nrm2238
27. Scaffidi P., Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006 May 19;312(5776):1059–63. doi: 10.1126/science.1127168. Epub 2006 Apr 27.
28. Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128(4): 693–705. doi: 10.1016/j.cell.2007.02.005
29. Liu L., Cheung T.H., Charville G.W. et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 2013;4(1):189–204. doi: 10.1016/j.celrep.2013.05.043
30. O’Sullivan R.J., Kubicek S., Schreiber S.L., Karlseder J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 2010;17:1218–1225. doi: 10.1038/nsmb.1897
31. Siebold A.P., Banerjee R., Tie F., Kiss D.L., Moskowitz J., Harte P.J. Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc Natl Acad Sci USA. 2010; 107(1): 169–74. doi: 10.1073/pnas.0907739107.
32. Alain L.F. Genetics, Epigenetics and Cancer. Canc Therapy & Oncol Int J. 2017; 4(2): 555634. DOI: 10.19080/CTOIJ.2017.04.555634
33. Takeshima H., Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol. 2019;3:7. doi:10.1038/s41698-019-0079-0
34. Zheng Y., Joyce B.T., Liu L. et al. Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res. 2017;45(15):8697–8711. doi:10.1093/nar/gkx587
35. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002; 21: 5427–5440 doi:10.1038/sj.onc.1205600
36. Zhao Z., Shilatifard A. Epigenetic modifications of histones in cancer. Genome Biol. 2019; 20: 245. doi: 10.1186/s13059-019-1870-5
37. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, et al. EZH2 oncogenic activity in castration-resistant prostate cancer is Polycomb-independent. Science 2012;338:1465–9. doi: 10.1158/2159–8290.CD-RW2012–233
38. Beca F., Kensler K., Glass B. et al. EZH2 protein expression in normal breast epithelium and risk of breast cancer: results from the Nurses’ Health Studies. Breast Cancer Res. 2017; 19, 21 doi:10.1186/s13058-017-0817-6
39. Li H., Zhang R. Role of EZH2 in Epithelial Ovarian Cancer: From Biological Insights to Therapeutic Target. Front Oncol. 2013;3:47. doi:10.3389/fonc.2013.00047
40. Di Cerbo V., Schneider R. Cancers with wrong HATs: the impact of acetylation, Briefings in Functional Genomics. 2013; 12(3): 231–243. doi:10.1093/bfgp/els065
41. Kour S., Rath P.C. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 2016;26:1–21. doi:10.1016/j.arr.2015.12.001
42. Jin L., Song Q., Zhang W., Geng B., Cai J. Roles of long noncoding RNAs in aging and aging complications. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1763–1771. doi:10.1016/j.bbadis.2018.09.021
43. North B.J., Sinclair D.A. The intersection between aging and cardiovascular disease. Circ Res. 2012;110(8):1097–1108. doi:10.1161/CIRCRESAHA.111.246876
44. Prasher D., Greenway S.C., Singh R.B. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol. 2020;98(1):12–22. doi: 10.1139/bcb-2019-0045
45. Tabaei S., Tabaee S.S. DNA methylation abnormalities in atherosclerosis. Artif Cells Nanomed Biotechnol. 2019;47(1):2031–2041. doi:10.1080/21691401.2019.1617724
46. Zhang W., Song M., Qu J., Liu G.H. Epigenetic Modifications in Cardiovascular Aging and Diseases. Circ Res. 2018;123(7):773–786. doi:10.1161/CIRCRESAHA.118.312497
47. Nativio R., Donahue G., Berson A. et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci. 2018;21:497–505. doi:10.1038/s41593-018-0101-9
48. Scarpa S., Fuso A., D’Anselmi F., Cavallaro R. A. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett. 2003.541:145–148. doi: 10.1016/S0014-5793(03)00277-1
49. Fuso A., Nicolia V., Cavallaro R.A., Ricceri L., D'Anselmi F., Coluccia P., Calamandrei G., Scarpa S. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci. 2008; 37(4):731–46. doi: 10.1016/j.mcn.2007.12.018
50. Giri A.K., Aittokallio T. DNMT Inhibitors Increase Methylation in the Cancer Genome. Front Pharmacol. 2019;10:385. doi: 10.3389/fphar.2019.00385
51. Ocampo A., Reddy P., Martinez-Redondo P. et al. In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell. 2016;167(7):1719–1733.e12. doi: 10.1016/j.cell.2016.11.052
Рецензия
Для цитирования:
Стражеско И.Д., Есакова А.П., Акопян А.А., Ткачева О.Н. Эпигенетика старения: основные механизмы. Проблемы геронауки. 2023;(2):88-93. https://doi.org/10.37586/2949-4745-2-2023-88-93
For citation:
Strazhesko I.D., Yesakova A.P., Akopyan A.A., Tkacheva O.N. Basic Epigenetic Mechanisms of Aging. Problems of Geroscience. 2023;(2):88-93. (In Russ.) https://doi.org/10.37586/2949-4745-2-2023-88-93